報告題目:A monotone numerical scheme for G-equation with application to the convergence rate of robust central limit theorem
報 告 人: 梁歌春 University of Warwick
報告時間:2019年4月8日下午3:00-4:00
報告地點:數學樓第二報告廳
摘要:We establish a monotone approximation scheme for Peng's G-equation and, moreover, determine the convergence rate by obtaining the error bounds between the approximate solution and the viscosity solution of the G-equation. This will in turn provides a convergence rate for Peng's central limit theorem. The convergence rate improves all the existing ones obtained under different model assumptions in the literature. Our method is analytical and is developed under the framework of the numerical analysis of viscosity solutions. Hence, it also makes an intrinsic connection between the robust central limit theorem and monotone schemes for viscosity solutions. Joint work with Shuo Huang.
報告人簡介:
梁歌春博士,2001-2005年,吉林大學經濟學院金融系本科;2005-2007年,同濟大學數學系碩士;2007-2011年,牛津大學數學所博士;2011-2013年,牛津大學Oxford-Man 數量金融研究所博士後;2013-2017年,倫敦國王學院數學系任終身教職,講師;2017年至今,英國華威大學統計系副教授。主要研究方向:金融數學和随機分析,包括随機微分方程、粗路徑理論、最優投資和信用風險模型,在國際權威學術期刊上發表論文多篇。