Home  /  Academic Activities  /  Content

Sino-Russian Mathematics Center-JLU Colloquium (2024-018)—Symplectic Morse Theory and Witten Deformation

Posted: 2024-08-04   Views: 

報告題目:Symplectic Morse Theory and Witten Deformation

報 告 人:Xiang Tang

所在單位:美國聖路易斯華盛頓大學

報告時間:2024年8月8日 9:00-11:00

報告地點:Zoom Id: 904 645 6677,Password: 2024

會議鍊接:

https://zoom.us/j/9046456677?pwd=Y2ZoRUhrdWUvR0w0YmVydGY1TVNwQT09&omn=89697485456


報告摘要: In this talk, we will introduce a Morse type cohomology for symplectic manifolds using gradient flows and integration of the symplectic form over spaces of gradient flow lines. We will study this symplectic Morse cohomology using the Witten deformation method. In particular, we will explain that the symplectic Morse cohomology is isomorphic to the cohomology of differential forms introduced by Tsai, Tseng, and Yau for symplectic manifolds. This talk is based on joint works with David Clausen and Li-Sheng Tseng.


報告人簡介:唐翔,美國聖路易斯華盛頓大學數學系教授。北京大學伟德线上平台2000屆本科畢業生。2004年在美國加州大學Berkeley分校數學系取得博士學位。2023年當選AMS Fellow。



Baidu
sogou