學術論文: |
[1] W. L. Li, Z. G. Xu and S. Y. Shi, Nonexistence of formal first integrals for nonlinear systems under general resonance, J. Math. Phys. 51, 022703 (2010). [2] W. L. Li and S. Y. Shi, Non-integrability of Henon-Heiles system, Celestial Mech. Dyn. Astr. 109 (2011) , no. 1, 1-12. [3] W. L Li, S. Y. Shi and B. Liu, Non-integrability of a class of Hamiltonian systems, J. Math. Phys. 52, 112702 (2011). [4] W. L. Li and S. Y. Shi, Galoisian obstruction to the integrability of general dynamical systems, J. Differential Equations, 252(2012), no. 10, 5518-5534. [5] S. Y. Shi and W. L. Li, Non-integrability of generalized Yang-Mills Hamiltonian system, Discrete Contin. Dyn. Syst. Series A, 33(2013), no. 4, 1645-1655. (通訊作者) [6] S. Y. Shi and W. L. Li, Non-integrability of a class of Painleve IV equations as Hamiltonian systems, J. Math. Phys, 54, 102703 (2013). (通訊作者) [7] W. L. Li, and S. Y. Shi, Weak-Painleve property and integrability of general dynamical systems, Discrete Contin. Dyn. Syst. Series A, 34(2014), no. 9, 3667-3681. [8] W. L. Li, and S. Y. Shi, Painleve property and integrability of polynomial dynamical systems, Communications in Mathematical Research, 30(2014), no. 4, 358-368. [9] J. Jiao, W. L. Li and Q. J. Zhou, Formal First Integrals of General Dynamical Systems, Advances in Mathematical Physics. (2016), 1036089. (通訊作者) [10] W. L. Li and S. Y. Shi, Corrigendum to “Galoisian obstruction totheintegrability of general dynamical systems” [J.Differ.Equ. 252 (10) (2012) 5518–5534],J. Differential Equations 262 (2017) 1253–1256 . [11] K. Y. Huang, S. Y. Shi and W. L. Li, Meromorphic Non-Integrability of Several 3D Dynamical Systems, Entropy 2017, 19, 211 (通訊作者) [12] Z. G. Xu, S. Y. Shi, W. L. Li, Higher order criterion for the nonexistence of formal first integral for nonlinear systems, Electronic Journal of Differential Equations, Vol. 2017 (2017), No. 274, pp. 1-11. (通訊作者)[13] K. Y. Huang, W. L. Li and S. Y. Shi, Meromorphic and formal first integrals for the Lorenz system, Journal of Nonlinear Mathematical Physics, 2018,25:1, 106-121. (通訊作者) [14] W. L. Li and S. Y. Shi, Singular perturbed renormalization group theory and its application to highly oscillatory problems,Discrete Contin. Dyn. Syst. Series B,2018, 23(4): 1819-1833. [15] R. Zhou, S. Y. Shi and W. L. Li , Singular renormalization groupapproach to boundary problems,Commun Nonlinear Sci Numer Simulat 71 (2019) 220–23. (通訊作者) [16] N. Sun, S. Y. Shi and W. L. Li, Singular renormalization group approach to SIS problems,Discrete Contin. Dyn. Syst. Series B,2020, 25(9): 3577–3596 [17] K. Y. Huang, S. Y. Shi and W. L. Li , Kovalevskaya exponents, weak Painleve property and integrability for quasi-homogeneous differential systems, Regular and Chaotic dynamics, 2020, 25(3): 295–312 [18] K. Y. Huang, S. Y. Shi and W. L. Li , First integrals of the Maxwell–Bloch system, Comptes Rendus de l’Académie des sciences – Mathématique, 2020, 358(1) : 3-11. [19] K. Y. Huang, S. Y. Shi and W. L. Li , Integrability analysis of the Shimizu-Morioka system, Commun Nonlinear Sci Numer Simulat, 2020,84: 105101. |