學術論文: |
[1] F. Z. Cong, Q. D. Huang and S. Y. Shi, Existence and uniqueness of periodic solutions for (2n+1)th-order differential equations, J. Math. Anal. Appl. 241(2000), no. 1, 1-9. [2] S. Y. Shi and Y. Li, Non-integrability for general nonlinear systems, Z. Angew. Math. Phys. 52(2001),no.2, 191-200. [3] K. H. Kwek, Y. Li and S. Y. Shi, Partial integrability for general nonlinear systems, Z. Angew. Math. Phys. 54(2003), no.1, 26-47. [4] W. C. Chan and S. Y. Shi, Heteroclinic orbits arising from coupled Chua's circuits, Internat. J. Bifur. Chaos Appl. Sci. Engrg. 13(2003), no.3, 571-582. [5] S. Y. Shi and Y. C. Han, Non-existence criteria for Laurent polynomial first integrals, Electron. J. Qual. Theory Differ. Equ. 2003(2003), No. 6, pp. 1-11. [6] S. N. Chow, P. Lin and S. Y. Shi, Spike solutions of a nonlinear electric circuit with a periodic input, Taiwanese J. Math., 9(2005), no. 4, 551-581. [7] S. Y. Shi, W. Z. Zhu and B. F. Liu, Non-existence of first integrals in Laurent polynomial ring for general semi-quasihomogeneous systems, Z. Angew. Math. Phys. 57(2006), no.5, 723-733. [8] S. G. Ji and S. Y. Shi, Periodic solutions for a class of second order ordinary differential equations, J. Optim. Theory Appl. 130(2006), no.1, 125-137. [9] S. G. Ji, Z. X. Liu and S. Y. Shi, Caratheodory method for a class of second order differential equations on the half line, J. Math. Anal. Appl. 325(2007), 1306-1313. [10] S. Y. Shi, On the nonexistence of rational first integrals for nonlinear systems and semiquasihomogeneous systems, J. Math. Anal. Appl. 335(2007), 125-134. [11] S. Y. Shi, Nonexistence and partial existence of rational first integrals for general nonlinear systems, (Chinese) Acta Math. Sci. Ser. A. 28(2008), 603-612. [12] F. Liu, S. Y. Shi and Z. G. Xu, Nonexistence of formal first integrals for general nonlinear systems under resonance, J. Math. Anal. Appl. 353(2010), 214-219. [13] Z. G. Xu, S. Y. Shi and F. Liu, Nonexistence and partial existence of first integrals for diffeomorphisms, Applied Mathematics Letters, 23 (2010), 399-403. [14] J. Jiao, S. Y. Shi and Z. G. Xu, Formal first integrals for periodic systems, J. Math. Anal. Appl. 366 (2010), 128-136. [15] W. L. Li, Z. G. Xu and S. Y. Shi, Nonexistence of formal first integrals for nonlinear systems under general resonance, J. Math. Phys. 51, 022703 (2010). [16] W. L. Li and S. Y. Shi, Non-integrability of Henon-Heiles system, Celestial Mech. Dyn. Astr. 109 (2011) , no. 1, 1-12. [17] J. Jiao, S. Y. Shi and Q. J. Zhou, Rational first integrals for periodic systems, Z. Angew. Math. Phys. 62(2011), no.2, 233-243. [18] M. L. Su, B. Yu and S. Y. Shi, A boundary perturbation interior point homotopy method for solving fixed point problems, J. Math. Anal. Appl., 377(2011), no. 2, 683-694. [19] W. L Li, S. Y. Shi and B. Liu, Non-integrability of a class of Hamiltonian systems, J. Math. Phys. 52, 112702 (2011). [20] S. H. Liang and S. Y. Shi, Existence of multiple positive solutions for m-point fractional boundary value problems with p-Laplacian operator on infinite interval, J. Appl. Math. Comput. 38(2012), 687-707. [21] W. L. Li and S. Y. Shi, Galoisian obstruction to the integrability of general dynamical systems, J. Differential Equations, 252(2012), no. 10, 5518-5534. [22] G. G. Liu, S. Y. Shi and Y. C. Wei, Semilinear elliptic equations with dependence on the gradient, Electronic Journal of Differential Equations, 2012 (2012), no. 139, pp. 1–9. [23] S. H. Liang and S. Y. Shi,Multiplicity of solutions for the noncooperative p(x)-Laplacian operator elliptic system involving the critical growth. J. Dyn. Control Syst. 18 (2012), no. 3, 379-396. [24] S. Y. Shi and W. L. Li, Non-integrability of generalized Yang-Mills Hamiltonian system, Discrete Contin. Dyn. Syst. Series A, 33(2013), no. 4, 1645-1655. [25] S. H. Liang and S. Y. Shi, Solition solutions to Kirchhoff type problems involving the critical growth in ,Nonlinear Anal. 81(2013), 31-41. [26] Y. C. Wei, S. Y. Shi and G. G. Liu, Existence and multiplicity of nontrivial solutions for partially superquadratic elliptic systems, Applied Mathematics Letters, 26(2013), no. 2, 290-295. [27] G. G. Liu, S. Y. Shi and Y. C. Wei, Multiplicity result for asymptotically linear noncooperative elliptic systems, Mathematical Methods in The Applied Sciences, 36(2013), no. 12, 1533-1542. [28] S. Y. Shi and W. L. Li, Non-integrability of a class of Painleve IV equations as Hamiltonian systems, J. Math. Phys, 54, 102703 (2013). [29] S. H. Liang and S. Y. Shi,Existence of multi-bump solutions for a class of Kirchhoff type problems in , J. Math. Phys, 54, 121510 (2013). [30] W. L. Li, and S. Y. Shi, Weak-Painleve property and integrability of general dynamical systems, Discrete Contin. Dyn. Syst. Series A, 34(2014), no. 9, 3667-3681. [31] G. G. Liu, S. Y. Shi and Y. C. Wei The existence of nontrivial critical point for a class of strongly indefinite asymptotically quadratic functional without compactness, Topological Methods in Nonlinear Analysis, 43(2014), no. 2, 323-344. [32] W. L. Li, and S. Y. Shi, Painleve property and integrability of polynomial dynamical systems, Communications in Mathematical Research, 30(2014), no. 4, 358-368.
|