報告題目:A counterexample to Elliott Conjecture of real rank zero setting and classification of extension algebras
報 告 人:安慶楠 講師 東北師範大學
報告時間:2024年1月5日 16:30-17:30
報告地點:數學樓三樓第五研讨室
校内聯系人:張遠航 zhangyuanhang@jlu.edu.cn
報告摘要:
We will talk about the Elliott conjecture of real rank zero C*-algebras. We exhibit two unital, separable, nuclear C*-algebras of stable rank one and real rank zero with the same ordered scaled total K-theory satisfying UCT, but they are not isomorphic with each other, which forms a counterexample to Elliott Classification Conjecture for real rank zero setting.
Such a result will modify the original conjecture into two modified versions. We will introduce an additional normal condition and give a classification result in terms of total K-theory. For the general setting, with a new invariant—total Cuntz semigroup, we classify a large class of C*-algebras obtained from extensions. The total Cuntz semigroup, which distinguish the algebras of our counterexample, could possibly classify all the C*-algebras of stable rank one and real rank zero.
報告人簡介:
安慶楠,東北師範大學數學與統計學院基礎數學學科講師,主要從事泛函分析方向相關的研究和教學工作,相關科研成果在《Journal of Functional Analysis》、《Journal of Operator Theory》等期刊發表。