當前位置: 首 頁 - 科學研究 - 學術報告 - 正文

伟德线上平台、所2024年系列學術活動(第025場):吳中明 副教授 南京信息工程大學

發表于: 2024-04-22   點擊: 

報告題目:Convergent plug-and-play splitting methods for nonconvex learning-based optimization with applications

報 告 人:吳中明 副教授 南京信息工程大學

報告時間:2024年4月22日下午 03:30

報告地點:數學樓第二報告廳

校内聯系人:李欣欣 xinxinli@jlu.edu.cn


報告摘要:This talk will introduce several splitting methods for nonconvex optimization problems, and then combine them with extrapolation and Plug-and-Play (PnP) prior. Specifically, we investigate the convergence properties and applications of the three-operator splitting method, also known as Davis-Yin splitting (DYS) method, integrated with extrapolation and Plug-and-Play (PnP) denoiser within a nonconvex framework. Our approach provides an algorithmic framework that encompasses both extrapolated forward-backward splitting and extrapolated Douglas-Rachford splitting methods. To establish the convergence of the proposed method, we rigorously analyze its behavior based on the Kurdyka-Łojasiewicz property, subject to some tight parameter conditions. Moreover, we introduce two extrapolated PnP-DYS methods with convergence guarantee, where the traditional regularization prior is replaced by a gradient step-based denoiser. Finally, we conduct extensive experiments on image deblurring and image super-resolution problems, where our results showcase the advantage of the extrapolation strategy and the superior performance of the learning-based model that incorporates the PnP denoiser in terms of achieving high-quality recovery images.


報告人簡介:吳中明,南京信息工程大學副教授,香港中文大學博士後,新加坡國立大學訪問學者。研究方向為最優化理論、方法及其應用。在SIAM Journal on Imaging Sciences, IEEE Transactions on Signal Processing, Computational Optimization and Applications, Journal of Global Optimization, Mathematics of Computation, Annals of Operations Research等期刊發表/錄用論文三十餘篇。入選南京信息工程大學“青年科技之星”,江蘇省“雙創博士”,人社部博管辦“香江學者計劃”。擔任中國運籌學會宣傳工作委員會委員,中國運籌學會數學規劃分會青年理事,江蘇省運籌學會理事、副秘書長。主持國家自然科學青年基金項目,中國博士後面上資助項目,江蘇省科技智庫青年項目。


Baidu
sogou