當前位置: 首 頁 - 科學研究 - 學術報告 - 正文

伟德线上平台、所2024年系列學術活動(第028場): 張敏 助理研究員 北京大學

發表于: 2024-04-25   點擊: 

報告題目: An adaptive moving mesh discontinuous Galerkin method for the radiative transfer equation

報 告 人: 張敏 助理研究員

所在單位: 北京大學

報告時間:2024年4月29日 星期一 下午 15:00-16:00

報告地點:數學樓三樓研讨室6

校内聯系人:陶詹晶 zjtao@jlu.edu.cn


報告摘要:

The radiative transfer equation models the interaction of radiation with scattering and absorbing media and has important applications in various fields in science and engineering. It is an integro-differential equation involving time, frequency, space, and angular variables and contains an integral term in angular directions while being hyperbolic in space. The challenges for its numerical solution include the needs to handle with its high dimensionality, the presence of the integral term, and the development of discontinuities and sharp layers in its solution along spatial directions. In this talk, we present the solution of the radiative transfer equation using an adaptive moving mesh DG method for spatial discretization together with the discrete ordinate method for angular discretization. The former employs a dynamic mesh adaptation strategy based on moving mesh partial differential equations to improve computational accuracy and efficiency. Numerical examples are presented to demonstrate the mesh adaptation ability, accuracy, and efficiency of the method.


報告人簡介:

張敏,北京大學大數據分析與應用技術國家工程實驗室助理研究員,北京大學重慶大數據研究院基礎軟件科學研究中心研究員。2020年12月獲廈門大學計算數學博士學位。曾為美國堪薩斯大學訪問學者、北京大學博雅博士後,獲第十七屆鐘家慶數學獎、入選北京市科協2024-2026年度青年人才托舉工程,現主持國家自然科學青年基金、參與科技部國家重點研發計劃重點專項。主要研究興趣包括輻射輸運、雙曲守恒律、模拟仿真等問題中的高精度保結構方法、自适應移動網格方法,在期刊SIAM J. Sci. Comput.、J. Comput. Phys.、J. Sci. Comput.等發表論文10餘篇。


Baidu
sogou