報告題目:Semiparametric spatial model for interval-censored data with time-varying covariate effects
報告人:張斌 教授 辛辛那提兒童醫院
報告時間:2024年6月20日 15:00-16:00
報告地點:數學樓第2報告廳
校内聯系人:杜明月 mingydu@jlu.edu.cn
報告摘要:Cox regression is one of the most commonly used methods in the analysis of interval-censored failure time data. In many practical studies, the covariate effects on the failure time may not be constant over time. Time-varying coefficients are therefore of great interest due to their flexibility in capturing the temporal covariate effects. To analyze spatially correlated interval-censored time-to-event data with time-varying covariate effects, a Bayesian approach with dynamic Cox regression model is proposed. The coefficient is estimated as a piecewise constant function and the number of jump points estimated from the data. A conditional autoregressive distribution is employed to model the spatial dependency. The posterior summaries are obtained via an efficient reversible jump Markov chain Monte Carlo algorithm. The properties of our method are illustrated by simulation studies as well as an application to smoking cessation data in southeast Minnesota.
報告人簡介:張斌教授2002年本科畢業于中國科學技術大學數學系,2005-2009年就讀于密蘇裡大學統計系并取得統計學博士學位。2009年至2012年受聘于阿拉巴馬伯明翰大學生物統計系擔任助理教授。2012年,張斌教授加入了辛辛那提兒童醫院生物統計與流行病學系,并于2021年晉升教授。現任辛辛那提兒童醫院、辛辛那提醫學院放射學系統計中心主任。他的研究方向主要包括生存分析、醫療大數據、醫學研究數據分析、臨床試驗、生信分析、貝葉斯方法等。在校求學與工作期間,張斌教授曾獲得多個學校和國際的獎項,其中包括美國國家科學基金會和數理統計協會的青年科學家獎,并于2016年當選國際統計協會(ISI)會士。張斌教授主持或參與了多個美國國立衛生院NIH(如R01,U01,N01等大型研究項目)和其他研究機構(如蓋茨基金會等)支持的研究項目。張教授是20個雜志的編委或審稿人;Komen Career Catalyst Research (CCR) Basic and Translational Grant、National Security Agency (NSA-AMS) Grant等近10個基金的專家評審;發表學術論文與專著170餘篇。