報告題目:What is a Yetter-Drinfeld post-Hopf algebra?
報 告 人:Yunnan Li, Guangzhou University
所在單位:Guangzhou University
報告時間:2024年8月23日 10:00-11:00
報告地點:吉林大學數學樓第6研讨室
校内聯系人:生雲鶴 shengyh@jlu.edu.cn
報告摘要: Recently the notion of post-Hopf algebra was introduced, with the universal enveloping algebra of a post-Lie algebra as the prototype. Any cocommutative post-Hopf algebra gives rise to a sub-adjacent Hopf algebra, and then produces interacting structures such as relative Rota-Baxter operator, matched pair and Hopf brace. Just a few weeks ago, Sciandra proposed Yetter-Drinfeld post-Hopf algebra, as a natural generalization of post-Hopf algebra in the non-cocommutative setting, and most remarkably it also provides a sub-adjacent structure. Correspondingly, the concepts of Yetter-Drinfeld relative Rota-Baxter operator and Yetter-Drinfeld Hopf brace can be studied. In this talk, I intend to review Sciandra's work, and give some problems to concern.
報告人簡介:黎允楠,廣州大學數學與信息科學學院副教授,博士畢業于華東師範大學數學系,研究方向為李代數、量子群與代數組合,現與合作者在國際數學期刊Math. Z., J. Combin. Theory Ser. A., J. Noncomm. Geom., J. Algebra, Pacific J. Math., J. Algebraic Combin. 等發表論文十餘篇。2015年成為美國數學會數學評論網評論員,2018-2019國家公派美國羅格斯大學研修訪問,2020年認定為廣州市青年後備人才。