報告題目:A Free Boundary Problem for Modeling Plaques in the Artery
報 告 人:胡鋇 教授 (美國University of Notre Dame)
報告時間:2019年6月18日15:30--16:30
報告地點:數學樓第二報告廳
報告摘要:
We shall present a free boundary problem modeling the growth of a plaque in the artery. Atherosclerosis is a leading cause of death worldwide; it originates from a plaque which builds up in the artery. In our model, we consider a simplified version of plaque growth involving LDL and HDL cholesterols, macrophages and foam cells, which satisfy a coupled system of PDEs with a free boundary, the interface between the plaque and the blood flow. We present the existence of a small radially symmetric stationary plaques and establish a sharp condition that ensures their stability. Necessary and sufficient conditions under which a small initial plaque will shrink and disappear, or persist for all times, are discussed.
報告人簡介:
胡鋇教授現就職于美國University of Notre Dame,先後師從國内外偏微分方程領域的專家姜禮尚教授和Avner Friedman教授,多年來從事偏微分方程理論及其應用研究,尤其在抛物方程的爆破理論,生物醫學中的自由邊值問題的理論和數值以及具有金融背景的自由邊界問題數值解的收斂性等研究領域中取得了豐富的研究成果,在J. Differential Equations,SIAM J. Math. Anal.,Arch. Ration. Mech. Anal.等國際著名期刊上發表高水平學術論文百餘篇,被引用千餘次。現任《Discrete and Continuous Dynamical Systems-Series B》以及《Nonlinear Analysis-Real World Application》編委。