題目:Persistence approximation property for maximal Roe algebras.
報告人:汪鎮 莆田學院
報告時間:2019年1月5日下午02:00-03:00
報告地點:數學樓633
摘要:Persistence approximation property was introduced by Herv’e Oyono-Oyono and
Guoliang Yu. This property provides a geometric obstruction to Baum-Connes conjecture.
In this paper, we mainly discuss the persistence approximation property for maximal Roe
algebras. We show that persistence approximation property of maximal Roe algebras
follows from maximal coarse Baum-Connes conjecture. In particular, let X be a discrete
metric space with bounded geometry, assume X admits a fibred coarse embedding into
Hilbert space and X is coarsely uniformly contractible, then the maximal Roe algebra of this space has persistence approximation property. We also give an application of the quantitative K-theory to the maximal coarse Baum-Connes conjecture.
報告人簡介:汪鎮,博士,莆田學院數學與金融學院教師。2018年畢業于華東師範大學。目前主要研究算子代數的K-理論,特别是使用量化K-理論去計算一類特殊的C*代數,或者是使用量化K-理論去研究粗Baum-Connes猜想的障礙,取得了一些成果。