報告題目:Generalized Kauffman-Harary Conjecture
報 告 人:郭慧正 喬治華盛頓大學
報告時間:2023年6月25日 20:00-21:00
報告地點:數學樓3樓第1研讨室
校内聯系人:王骁 wangxiaotop@jlu.edu.cn
報告摘要:For a reduced alternating diagram of a knot with a prime determinant $p,$ the Kauffman-Harary conjecture states that every non-trivial Fox $p$-coloring of the knot assigns different colors to its arcs. In this paper, we prove a generalization of the conjecture stated nineteen years ago by Asaeda, Przytycki, and Sikora: for every pair of distinct arcs in the reduced alternating diagram of a prime link with determinant $\delta,$ there exists a Fox $\delta$-coloring that distinguishes them.
報告人簡介:郭慧正,本科畢業于伊利諾伊大學香槟分校,現就讀于喬治華盛頓大學。從事低維拓撲,紐結理論方向的研究。