報告題目:Stability in inverse problem of an elastic plate with a curved middle surface
報 告 人: 符松韌 博士後
所在單位: 中國科學院數學與系統科學研究院
報告時間:2024年5月15日 星期三 下午15:00-15:30
報告地點:騰訊會議 ID:785-154-326
校内聯系人:餘永毅 yuyy122@jlu.edu.cn
報告摘要: This talk is concerned with the inverse problem of determining three spatially varying functions including the source term and the mass density for a curved plate. The stability of determining these parameters is derived by the classical Carleman estimates and observability inequalities. Moreover, by developing a geometrical multiplier identity and using the compactness-uniqueness method, the tangential derivative can be removed. Two kinds of boundary conditions are considered: one is the hinged boundary conditions and the other is the clamped boundary conditions. In particular, the case of the Euler-Bernoulli plate is included.
報告人簡介: 符松韌,現為中科院數學與系統科學研究院系統所博士後(合作導師:張紀峰研究員)。主要研究方向為偏微分方程的反問題以及穩定性理論,已在 Inverse Problems、Journal of Geometric Analysis等期刊發表論文多篇。