報告題目:Quantum symmetric spaces and Sklyanin determinants
報 告 人:Naihuan Jing
所在單位:North Carolina State University
報告時間:2024年7月14日 9:30-11:30
報告地點:吉林大學正新樓209
報告摘要: We study the invariant theory of quantum symmetric spaces of symplectic and orthogonal types. Explicitly the quantum symmetric spaces are realized as subrings of the quantum coordinate ring $M_q(N)$ where the relations are given by the quantum minors, Sklyanin determinants, and quantum Pfaffians. One of our results points out that the square of root of quantum determinant is essentially the Sklyanin determinant in a special case, answering a question of Noumi. This is joint work with Jian Zhang(張健).
報告人簡介: 景乃桓,耶魯大學博士,北卡州立大學終身教授。主要從事無限維李代數、量子群、表示論、代數組合和量子計算方面的研究工作。景乃桓教授在對稱函數方面的研究成果被國際上命名為“景氏算子”,在國際主要數學刊物上發表近百篇論文,編輯著作5部。