報告題目:Distribution solutions of a static dispersion Schrodinger equation
報 告 人:雷雨田教授 南京師範大學
報告時間:2024年9月24日 14:00-15:00
報告地點:騰訊會議 ID:351-382-189
點擊鍊接入會,或添加至會議列表:
https://meeting.tencent.com/dm/G08l3beexVtF
校内聯系人:劉長春 liucc@jlu.edu.cn
報告摘要:
In this talk, we state qualitative properties of distribution solutions of a fourth order equation
$$
-\Delta u(x)+a^2\Delta^2u(x)=u^q(x), \quad u(x)>0 \ \ in \ \ \mathbb{R}^3,
$$
where $a>0$ and $q>0$. It is the static equation of a mixed dispersion Schrodinger equation, and also the Euler-Lagrange equation satisfied by extremal functions of an embedding inequality. We obtain some Liouville theorems and the corresponding critical exponents, which imply the best constant of the embedding inequality cannot be attained. We also obtain some regularity results (involving differentiability, integrability, radial symmetry) and asymptotics at infinity of distribution solutions. Here an equivalent integral equation with the Coulomb potential $|x|^{-1}(1-e^{-|x|/a})$ plays a key role. In addition, we also use the Pohozaev identity in integral form to obtain the Liouville theorem of this integral equation. Such the Pohozaev identity still works to handle the Allen-Cahn-type integral equation.
報告人簡介:
雷雨田,南京師範大學教授,博士生指導教師。1989年考入吉林大學數學系。1999年畢業于吉林大學數學研究所,獲理學博士學位。2009年8月至2010年8月到美國科羅拉多大學應用數學系訪問一年。 從事Ginzburg-Landau型泛函的極小元的極限行為的研究,并以相變中的若幹能量攝動模型為研究對象,研究它們的變分理論和漸近性态,同時探讨p-調和映射的各種性質, 近年從事Riesz位勢, Bessel位勢, Wolff位勢在Lane-Emden型方程(組)中的應用。已在SIAM J. Math. Anal.,Math. Z., J. Differential Equations, Calc. Var. Partial Differential Equations,J. Funct. Anal. 等雜志發表100多篇文章。主持和完成多項國家自然科學基金和省部級項目。