報告題目:Global well-posedness to a parabolic-degenerate angiogenesis system
報 告 人:金春花 教授 華南師範大學
報告時間:2024年9月26日 9:00-10:00
報告地點:騰訊會議 ID:306-806-427
點擊鍊接入會,或添加至會議列表:
https://meeting.tencent.com/dm/idNtt7lqe5Ud
校内聯系人:劉長春 liucc@jlu.edu.cn
報告摘要:
In this talk, we focus on the study of a parabolic-degenerate angiogenesis model, where the chemoattractant $v$ does not diffuse and $u$ exhibits slow diffusion ($m>1$). we confront unique challenges stemming from the absence of a regularizing effect within the equation governing $v$, leading to a loss of regularity in $v$. To mitigate these obstacles, we introduce novel functionals. Our findings reveal that for spatial dimensions $N\le 3$, global solutions exist for any slow diffusion ($m>1$). For higher dimensions $N>3$, solutions are global if $m>\frac{3N}{2N+2}$. Moreover, we investigate the long-time asymptotic behavior of weak solutions. We demonstrate that when $m\ge 2$, the weak solution ultimately converges to the constant equilibrium point $(\overline u_0, 0)$. Furthermore, we extend this convergence result to all bounded global weak solutions for any slow diffusion case.
報告人簡介:
金春花,華南師範大學數學科學學院教授、博士生導師;長期從事非線性擴散模型相關理論的研究,主持國家自然科學基金面上項目、國家自然科學基金青年基金項目、廣東省自然科學傑出青年基金、教育部博士點專項基金、中國博士後科學基金特别資助、中國博士後科學基金一等資助等;獲教育部新世紀優秀人才支持計劃、中國數學會鐘家慶數學獎、香江學者獎、教育部自然科學獎二等獎、吉林省優秀博士論文、全國優秀博士學位論文提名獎;入選廣東特支計劃百千萬青年工程拔尖人才項目、廣東省高等學校優秀青年教師培養計劃、廣州市珠江科技新星項目等;在J. Differential Equations、Nonlinearity、DCDS、J. Nonlinear Sci.、Physica D等雜志上發表論文90餘篇。