報告題目:Recent Developments in the Schur-Weyl Duality
報 告 人:杜傑教授 澳大利亞新南威爾士大學
報告時間:2019年7月13日15:30-16:20
報告地點:數學樓第一報告廳
Abstract:
Schur algebras are certain finite dimensional algebras introduced by Issai Schur, one of the pioneers of representation theory, at the beginning of last century to relate representations of the general linear and symmetric groups. This theory is also known as the Schur-Weyl duality. Over its history of one hundred years, Schur algebras continue to make profound influence in several areas of mathematics such as Lie theory, representation theory, invariant theory, combinatorics, etc. I will outline some definitions of (quantum) Schur algebras and discuss a number of applications. In particular, I will report on some latest developments in the affine and super cases.
報告人簡介:
杜傑,澳大利亞新南威爾士大學教授,在Weyl群的胞腔分解、代數群,q-Schur代數及其表示、在Ringle-Hall 代數及量子群和量子超群等方面取得了一系列原創性的成果,目前已經在國際一流雜志發表論文70餘篇,合作完成專著《Finite dimensional algebras and quantum groups》和《A double Hall algebra approach to quantum affine Schur-Weyl theory》,分别在美國數學會和倫敦數學會出版。